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a b s t r a c t

The magnetic properties of the spinels systems Zn1−xCdxCr2Se4 and Hg1−xCdxCr2S4 have been studied by
mean-field theory and high-temperature series expansions in the range 0 ≤ x ≤ 1. The nearest neighbour
and the next-nearest-neighbour super-exchange interaction J1(x) and J2(x) respectively, are calculated
for the two systems, using the first theory in the range 0 ≤ x ≤ 1. The intra-planar and the inter-planar
interactions are deduced. The corresponding classical exchange energy for the magnetic structures is
obtained.

The second theory has been applied to the spinel systems Zn1−xCdxCr2Se4 and Hg1−xCdxCr2S4, combined
with the Padé approximants method, to determine the magnetic phase diagrams (TC versus dilution x) in
the range 0 ≤ x ≤ 1. The obtained theoretical results are in agreement with the experimental ones obtained
by magnetic measurements. The critical exponents associated with the magnetic susceptibility (�) and
with the correlation lengths (v) are deduced for the two systems in the ordered phase.

© 2009 Elsevier B.V. All rights reserved.
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. Introduction

During the last decade the fascinating physics of spinel com-
ounds came into the focus of modern solid-state physics and
aterials science. Materials with spinel structures, with the for-
ula AB2X4, are of continuing interest because of their wide variety

f physical properties. This is essentially related to (i) the exis-
ence of two types of crystallographic sublattices, tetrahedral (A)
nd octahedral (B), available for the metal ions; (ii) the great flex-

bility of the structure in hosting various metal ions, differently
istributed over the two sublattices, with a large possibility of
eciprocal substitution between them. Solid solutions of thiospinels
nd selenospinels have received considerable attention because
f their interesting electrical and magnetic properties, which can
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vary greatly as a function of composition [1–7]. The compounds
HgCr2S4, CdCr2S4, HgCr2Se4 and CdCr2Se4 are known to be fer-
romagnetic spinels [8–11], whereas ZnCr2S4 and ZnCr2Se4 are
known to be antiferromagnetic [12,13]. The chromium ion Cr3+

occupies the octahedral sites in the spinel B sublattice and the
Cd2+ occupies the tetrahedrally coordinated A sublattice. In the
mixed spinels Zn1−xCdxCr2Se4 and Hg1−xCdxCr2S4, two impor-
tant frustration effects are present: the topological frustration
in presence of antiferromagnetic interactions and the compe-
tition between n.n. ferromagnetic Cr–Se(S)–Cr interactions J1
and high-order-neighbours antiferromagnetic Cr–Se(S)–(Zn, Cd,
Hg)–Se(S)–Cr interactions J2. Zn, Hg and Cd are involved as an inter-
mediate in super-exchange interactions between higher-order

neighbours.

In this work, the first- and the second-nearest-neighbours
exchange interactions J1(x) and J2(x) are calculated on the
basis of magnetic-measurement results in Zn1−xCdxCr2Se4 and

http://www.sciencedirect.com/science/journal/09258388
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Table 1
The critical temperature TC(K), the Néel temperature TN(K), the Curie–Weiss temperature �p, values of the first, second, intra-plane, inter-plane exchange integrals, the ratio
of inter- to-intra-planar and the energy of Zn1−xCdxCr2Se4 as a function of dilution x.

x TN (K) [14] TC(K) [14] �p (K) [14] J1/kB (K) J2/kB (K) Jaa/kB (K) Jab/kB(K) Jac/kB (K) |(Jab + Jac)/Jaa| E/kBS2 (K)
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1.0 – 130.00 204.00 19.800 −3.1
0.8 – 103.50 195.13 16.854 −1.9
0.6 – 72.60 174.30 13.070 −0.7

g1−xCdxCr2S4 in the range 0 ≤ x ≤ 1 [14]. The values of the intra-
lane and inter-plane interactions Jaa, Jab and Jac, respectively, are
educed. The interaction energy of the magnetic structure for the
wo systems is obtained, using the values of J1(x) and J2(x) obtained
n the range 0 ≤ x ≤ 1.

In recent work [1,2], we have used the high-temperature series
xpansions (HTSE) to study the thermal and disorder variation of
he short-range order (SRO) in the particular B-spinel compound
nCr2xAl2−2xS4.

The Padé approximant (P.A.) [15] analysis of the HTSE of the
orrelation length has been shown to be a useful method for the
tudy of the critical region [16–19]. The model that we used in the
resent work is valid in the case of a spinel structure. We have used
he HTSE technique to determine the critical temperature TC or the
éel temperature TN and the critical exponent � and v associated
ith the magnetic susceptibility � and with correlation length �,

espectively, in the ordered phase.

. Theoretical method

Starting with the well-known Heisenberg model, the Hamilto-
ian of the system is given by:

= −2
∑

i,j

Jij�Si
�Sj (1)

here Jij is the exchange integral between the spins situated at sites
and j. �Si is the atomic spin of the magnetic ion located on the ith
ite. The factor “2” in Eq. (1) arises from the fact that, when summing
ver all possible pairs 〈ij〉 exchange interactions, we count each
air twice. The mean-field approximation leads to simple relations
etween the paramagnetic Curie-temperature �p and the critical
emperature TC and the two considered exchange integrals J1 and
2.

In the case of spinels containing the magnetic moment only
n the octahedral sublattice, the mean-field approximation of this
xpression leads to simple relations between the paramagnetic
urie-temperature �p and the critical temperature TC; respectively,
nd the two exchange integrals J1 and J2: these can be used to derive
umerical values for the exchange constants. Following the method
f Holland and Brown [20], the expression of TC and �p that can
escribe the systems Zn1−xCdxCr2Se4 and Hg1−xCdxCr2S4 are:

= 2S(S + 1)
[2J − 4J ] (2)
C 3kB 1 2

P = 2S(S + 1)
3kB

[6J1 + 12J2] (3)

here kB is the Boltzmann constant and SCr = 3/2.

able 2
he critical temperature TC (K), the Néel temperature TN (K), the Curie–Weiss temperature
f inter- to-intra-planar and the energy of Hg1−xCdxCr2S4 as a function of dilution x.

x TN (K) [14] TC (K) [14] �p (K) [14] J1/kB (K) J2/kB (K)

1.0 – 84.00 152.78 13.492 −1.653
0.6 – 71.32 159.86 12.46 −0.901
0.4 – 61.88 158.68 11.477 −0.449
39.600 54.400 −12.400 1.060 81.600
33.708 52.040 −7.688 1.315 78.060
26.140 46.480 −2.900 1.667 69.720

In the antiferromagnetic region, the Néel temperature TN is
given by [21]:

TN = 5
2kB

�(ϕ) (4)

where �(ϕ) is the eigenvalue of the matrix formed by the Fourier
transform of the exchange integral. Using Eqs. (2)–(4) together with
the experimental values of TC, TN and �p [14], the values of J1(x)
and J2(x) have been determined for each composition of the sys-
tem. The optimum values are given in Tables 1 and 2. In the same
tables we give also the values of the intra-plane and inter-plane
interactions Jaa = 2J1; Jab = 4J1 + 8J2and Jac = 4J2; respectively and the
ratio of inter- to intra-planar interactions Jinter/Jintra = |(Jab + Jac)/Jaa|
for 0 ≤ x ≤ 1. The obtained values of the exchange integrals (J1 and
J2) will be used in the following section.

The values of the corresponding classical exchange energy
E/kBS2 = 6J1 + 12J2 [21] for the magnetic structure are given.

3. High-temperature series expansions

In this section we have used the results given by the HTSE for
both the zero field magnetic susceptibility � and the correlation
length �(T) with arbitrary y = J2/J1 up to sixth order ˇ in Ref [22].

Figs. 1 and 2, show magnetic phase diagrams of Zn1−xCdxCr2Se4
and Hg1−xCdxCr2S4 systems, respectively. We can see the good
agreement between the magnetic phase diagrams obtained by the
HTSE technique and the experimental ones [23–26].

The simplest assumption that one can make concerning the
nature of the singularity of the magnetic susceptibility �(T) is that
at the neighbourhood of the critical point the above two functions
exhibit an asymptotic behaviour:

�(T) ∝ (T − TC)−� (3’)

�2(T) ∝ (TC − T)−2� (4’)

Estimates of TC or TN, � and v for Zn1−xCdxCr2Se4 and
Hg1−xCdxCr2S4 have been obtained using the Padé approximate
method (P.A.) [15]. The [M, N] PA to the series F(ˇ) is a rational
fraction PM/QN, with PM and QN, polynomials of degree M and N in
ˇ = 1/kBT, satisfying: F(ˇ) = PM/QN + O(ˇM+N+1). The sequence of [M,
N] P.A. to be both log(�(T)) and log(�2(T)) are found to be conver-
gent. The simple pole corresponds to TC or TN and the residues to
the critical exponents � and v.
4. Discussions and conclusions

J1(x) and J2(x) have been determined from mean-field theory,
using the experimental data of TC or TN and �p [14] for each

�p, values of the first, second, intra-plane, inter-plane exchange integrals, the ratio

Jaa/kB (K) Jab/kB (K) Jac/kB (K) |(Jab + Jac)/Jaa| E/kBS2 (K)

26.984 40.744 −6.612 1.246 61.116
24.920 42.632 −3.604 1.566 63.948
22.954 42.316 −1.796 1.765 63.474
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Fig. 1. Magnetic phase diagram of Zn1−xCdxCr2Se4. The various phases are the
paramagnetic phase (PM), ferromagnetic phase (FM) (0.5 ≤ x ≤ 1), mixed phase
(0.4 ≤ x < 0.5) and helimagnetic (HM) (0 ≤ x < 0.4). The solid circles are the present
results (given by HTSE method). The solid star represents the experimental points
deduced by magnetic measurements [14].

Fig. 2. Magnetic phase diagram of Hg1−xCdxCr2S4. The various phases are the
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aramagnetic phase (PM), ferromagnetic phase (FM) (0.4 ≤ x < 1), phase mixed
0.35 ≤ x < 0.4), and helimagnetic (HM) phase (0 ≤ x ≤ 03.5). The solid circles are the
resent results (given by HTSE method). The solid star represents the experimental
oints deduced by magnetic measurements [14].

ilution. From these values we have deduced the values of the intra-
lane and inter-plane interactions Jaa, Jbb and Jac, respectively, the
nergy of the magnetic structures and the ratio of inter to intra-
lanar interactions Jinter/Jintra = |(Jab + Jac)/Jaa|. The values obtained
or Zn1−xCdxCr2Se4 and Hg1−xCdxCr2S4 are given in Tables 1 and 2
n the range 0 ≤ x ≤ 1.

From Table 1 corresponding to Zn1−xCdxCr2Se4, on can see that

1(x) and the absolute value of J2(x) decreases with x. The decrease
n J1(x) is due to the change in the average value of the Cr–Cr
istance. J2(x) represents the strength of the Cr–Se–A–Se–Cr super-
xchange, we expect its value to depend on the nature of the
-site cation. The ratio Jinter/Jintra = |(Jab + Jac)/Jaa| increases when x

[
[
[
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decreases. This variation is responsible on the apparition of the
magnetic spiral structure (HM) in ZnCr2Se4.

From Table 2 corresponding to Hg1−xCdxCr2S4, the situation is
different. J1(x), J2(x) and the exchange energy decrease in absolute
value with deceases x. It is found that the intra-plane interaction
Jaa at high concentrations of Cadmium, but the inter-plane inter-
action appears and reduces the stabilization of ferromagnetism at
sufficiently low concentrations.

The HTSE extrapolated with Padé approximants method is
shown to be a convenient method to provide valid estimations of
the critical temperatures for real system. By applying this method
to the magnetic susceptibility �(T) we have estimated the critical
temperature TC or TN for each dilution x. The obtained mag-
netic phase diagrams of the Zn1−xCdxCr2Se4 and Hg1−xCdxCr2S4
systems are presented in Figs. 1 and 2, respectively. Several ther-
modynamic phases may appear including the paramagnetic (PM),
ferromagnetic (FM) 0.5 ≤ x ≤ 1 for Zn1−xCdxCr2Se4 (0.4 ≤ x < 1 for
Hg1−xCdxCr2S4), mixed phases for Zn1−xCdxCr2Se4 (0.4 ≤ x < 0.5)
and for Hg1−xCdxCr2S4) in 0.35 ≤ x < 0.4, helimagnetic (HM) in
0 ≤ x ≤ 03.5 for Hg1−xCdxCr2S4 and in 0 ≤ x ≤ 0.4 for Zn1−xCdxCr2Se4.
In these figures we have included, for comparison, the experimen-
tal results obtained by magnetic measurement. From these figures
one can see good agreement between the theoretical phase dia-
gram and experimental results. In addition, we have determined
the region spin glass while using the expression of the nonlinear
susceptibility. In the other hand, the value of critical exponents �
and v associated with the magnetic susceptibility �(T) and with
the correlation length �(T), have been estimated in the order-
ing phase. The sequence of [M, N] PA to series of �(T) has been
evaluated. By examining the behaviour of these PA, the conver-
gence was found to be quite rapid. Estimates central values of
the critical exponents associated with the magnetic susceptibility
and with the correlation length are found to be � = 1.373 ± 0.002,
v = 0.695 ± 0.004 and � = 1.381 ± 0.002, v = 0.694 ± 0.008, for two
systems Zn1−xCdxCr2Se4 and Hg1−xCdxCr2S4, respectively. These
values are insensitive to dilution x in phase ordering for two sys-
tems. The values of � and � are nearest to the one of 3D Heisenberg
model [27], namely, 1.3866 ± 0.0012, and 0.7054 ± 0.0011. To con-
clude, it would be interesting to compare the critical exponents �
with other theoretical values. A lot of methods of extracting criti-
cal exponents have been given in the literature. We have selected
many of the methods, and summarised our findings below. Zarek
[28] has found experimentally by magnetic balance for CdCr2Se4
is � = 1.29 ± 0.02; for HgCr2Se4 � = 1.30 ± 0.02 and for CuCr2Se4 is
� = 1.32 ± 0.02.
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